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Perioperative Acute Kidney Injury: Diagnosis, Prediction, 
Prevention, and Treatment
Nicholas J. Douville, M.D., Ph.D., Michael Mathis, M.D., Sachin Kheterpal, M.D., M.B.A., Michael Heung, M.D., 
Jennifer Schaub, M.D., Abhijit Naik, M.B.B.S., Matthias Kretzler, M.D.

Acute kidney injury (AKI) after surgery has been con-
sistently associated with long-term morbidity,1 mor-

tality,2 and healthcare costs.3 Furthermore, the relationship 
persists even among patients with complete renal recovery,4 
or patients with minor perturbations in renal function not 
reaching the threshold for AKI.5 The mechanism, pathogen-
esis, and risk factors for postoperative AKI vary significantly 
by surgical type and corresponding perioperative stressors.

Because treatment options for postoperative AKI are 
limited,6,7 perioperative management has traditionally 
focused on prevention and diagnosis. Identifying prere-
nal (hypoperfusion), postrenal (outflow obstruction), and 
intrinsic renal (ischemic or nephrotoxic injury) causes are 
crucial first steps in the management of AKI.7 Additionally, 
the 2012 Kidney Disease Improving Global Outcome 
(KDIGO) Clinical Practice Guidelines emphasize severity- 
based management of AKI.8 In patients with normal kid-
ney function and mild AKI, management focuses on rapid 
identification and avoidance of nephrotoxic insults plus 
attention to volume status and renal perfusion pressure.7 
As the severity of AKI increases, the accompanying dis-
ruption to acid–base status and electrolyte balance may 
necessitate focused medical and supportive therapies, 
with renal replacement therapy and/or intensive care 
admission for the most severe cases.7

In this review, we define AKI in the perioperative 
setting, describe the epidemiologic burden, discuss 
procedure-specific risk factors, detail principles of 

management, and highlight areas of ongoing contro-
versy and research.

Diagnostic Criteria
Common definitions of AKI rely on changes in serum 
creatinine and absolute urine output to provide an easy 
to interpret, objective, and validated approach useful 
for epidemiologic studies; however, each component of 
common AKI metrics has limitations.8 Notably, urine 
output is significantly influenced by hypovolemia and 
diuretics, decreasing specificity, while serum creatinine 
only begins to increase after 50% of functional nephrons 
are lost, and these changes may not manifest for 48 to 
72 h after injury, leading to low sensitivity in previously 
healthy kidneys.7 Furthermore, serum creatinine can be 
impacted by nonrenal factors including age, muscle mass, 
nutritional status, liver function, and gastrointestinal 
elimination, further limiting diagnostic accuracy,9,10 and 
not all patients have a recorded baseline serum creatinine. 
Despite these limitations, serum creatinine remains the 
standard biomarker for AKI in perioperative practice.10

The KDIGO criteria, currently used to define AKI,8 
update two previous consensus definitions, (1) Risk, 
Injury, Failure, Loss, End-stage Renal Disease (RIFLE)11 
and (2) AKI-Network (AKIN),12 to capture patients 
with smaller creatinine increases, allowing earlier disease 
detection.13
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KDiGo aKi Consensus Definition
Currently, the perioperative medical community has largely 
adopted the KDIGO consensus criteria to define postop-
erative AKI within 7 days of an operative intervention. The 
KDIGO consensus criteria, published in 2012, included 
a few modifications from previous consensus definitions. 
Notably, the surveillance window for the relative changes 
in serum creatinine was extended to 7 days (the time win-
dow for the absolute increase of 0.3 mg/dl or greater rise in 
serum creatinine remains at 48 h). Additionally, the require-
ment for stage 3 AKI that serum creatinine increase by 
0.5 mg/dl or greater in those with serum creatinine 4.0 mg/
dl or greater was removed, and estimated glomerular filtra-
tion rate–based criteria for pediatric patients were added 
(table 1).8

nomenclature as a Function of Chronicity
When KDIGO AKI (stage 1 or greater) persists for more 
than 7 days after the inciting event, it is termed acute kid-
ney disease.14 When the disease process persists beyond 90 
days, it transitions from acute kidney disease to chronic kid-
ney disease.

Pathophysiology
AKI represents a clinical syndrome, rather than a single 
disease, with most cases being multifactorial. Commonly 
implicated mechanisms include (1) oxido-inflammatory 
stress (for example, hyperoxia or glyco-oxidative injury), (2) 
renal hypoperfusion (for example, hypotension or anemia), 
(3) endogenous or exogenous nephrotoxins, and (4) iatro-
genic causes (fig. 1). Venous congestion has also been asso-
ciated with postoperative AKI through multiple potential
mechanisms including (1) hypoperfusion, (2) inflammation, 
(3) oxidative stress, (4) endothelial activation, and (5) sympa-
thetic activation.15 Administration of nephrotoxic drugs and
the need for intravenous contrast also place surgical patients
at risk for acute interstitial nephritis and acute tubular dam-
age.16 Prerenal etiologies, like true volume depletion and
volume dysregulation secondary to congestive heart failure, 
and acute tubular injury from a myriad of insults including

nephrotoxic drugs and intravenous contrast, are common 
mechanisms in the postoperative setting. The surgical envi-
ronment also introduces the possibility of iatrogenic injury. 
Examples include ureteral damage in an intraabdominal 
surgery and emboli from vascular procedures.

incidence and epidemiology
The incidence of AKI varies with socioeconomic status, 
healthcare setting, and population risk profile.17 AKI in the 
surgical population is usually reported separately for (1) car-
diac surgery and (2) noncardiac surgery populations. The 
pooled incidence of any stage of cardiac surgery–associated 
AKI in a meta-analysis of 320,086 cardiac surgery patients 
worldwide was 22.3% (95% CI, 19.8 to 25.1).18 Of the 
patients, 13.6% were classified as stage 1, 3.8% were stage 2, 
2.7% were stage 3 (without renal replacement therapy), and 
2.3% were stage 3 (requiring renal replacement therapy).18

AKI is also a frequent complication after thoracic sur-
gery. The incidence varies significantly based upon the 
extent of the procedure: (1) sublobar resection, 3.8% (2.0 
to 6.2%); (2) lobectomy, 6.7% (4.1 to 9.9%); (3) bilobec-
tomy or pneumonectomy, 12.1% (8.1 to 16.6%); and (4) 
esophagectomy, 10.5% (5.6 to 16.7%).19 Risk factors for 
AKI after thoracic surgery are advanced age, male sex, 
higher body mass index, higher American Society of 
Anesthesiologists (Schaumburg, Illinois) Physical Status clas-
sification, hypertension, diabetes, long-term angiotensin- 
converting enzyme inhibitor or angiotensin receptor 
blockers use, hypoalbuminemia, lower pulmonary func-
tion, extent or duration of surgery, intraoperative colloid 
administration, and higher estimated blood loss.19

The incidence of AKI after noncardiac or nonthoracic 
surgery varies substantially based upon the type of proce-
dure. Data from 37,345 noncardiac surgeries demonstrated 
a total AKI incidence of 4.7% (KDIGO stage 1, 2.9%; stage 
2, 0.7%; and stage 3, 1.1%).5 A smaller, retrospective study 
of 1,869 noncardiac surgical procedures found 128 (6.8%) 
cases of AKI, divided between 5.4% KDIGO stage 1 and 
1.4% KDIGO stage 2 or 3.1

Patients undergoing major vascular surgery have also 
been shown to have an increased risk for postoperative 

Table 1. KDIGO Diagnostic Criteria

stage 1 2 3

Serum creatinine • In creased 1.5–1.9 times within 7 days 
or increased ≥ 0.3 mg/dl (26.5 µmol/l) 
within 48 h

• Se rum creatinine: increased 2–2.9 times 
within 7 days

• Se rum creatinine: increased > 3 times or ≥ 
4 mg/dl (353.6 µmol/l)

• Es timated glomerular filtration rate to < 35 
ml·min−¹·1.73 m−² in patients < 18 yr old

• Initiation of renal replacement therapy
urine output • < 0.5 ml · kg−1·  h−1 for 6–12 h • < 0.5 ml · kg−1 · h−1 for ≥ 12 h • < 0.3 ml · kg−1 · h−1 for > 24 h or anuria for ≥ 12 h

KDIGO, Kidney Disease: Improving Global Outcomes.
Khwaja a: KDIGO clinical practice guidelines for acute kidney injury. nephron Clin Pract 2012; 120:c179–84.
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AKI due to a combination of patient and surgical risk 
factors. Although the incidence across all vascular pro-
cedures is estimated to be as high as 49%,3 the inci-
dence differs dramatically based on specific procedure. 
For example, procedures on the lower extremities have 
a relatively low incidence of AKI (4% for infrainguinal 
bypass; 19% for endovascular revascularization of crit-
ical limb ischemia).3 This contrasts with much higher 
incidence in aneurysm repairs, with some reports as 
high as 75% for emergent, open repair of a ruptured 
aneurysm.20

Retrospective studies place the incidence in noncar-
diothoracic, nonvascular surgery between 6 and 13%, 
depending on the diagnostic criteria used.21–23 Trauma 
patients are at increased risk for AKI due to a variety 
of overlapping mechanisms, including renal hypoper-
fusion (due to hemorrhagic shock), direct renal injury, 
rhabdomyolysis, abdominal compartment syndrome, and 
nephrotoxic exposure.24 Independent risk factors for the 
development of AKI after trauma include (1) older age, 
(2) blood transfusion, (3) comorbidities like diabetes or
chronic kidney disease, (4) systolic blood pressure upon
admission, and (5) lactic acidosis.24 The incidence of AKI
in the trauma population ranges from 12% in the gen-
eral population to 20% in the population admitted to the
intensive care unit (ICU).25

The incidence of AKI varies dramatically within 
intraabdominal surgery from 0.2% after appendectomy to 
3.5% in exploratory laparotomies.26 The overall incidence 
is 1.1%. More than half of liver transplant recipients expe-
rience postoperative AKI,27 with a recent study demon-
strating a significant proportion of stage 2 (24.9%) or stage 
3 (17.7%) AKI.28

Risk Factors
Risk factors for postoperative AKI can generally be divided 
as (1) patient-related, (2) surgery-related, (3) anesthetic- 
related, and (4) postoperative risk factors.2

Validated risk Models

Although many predictive models have been published, we 
present five validated models for predicting postoperative 
AKI (compared in table 2).29–31 The validated models largely 
focus on patient factors; however, the two models devel-
oped by Kheterpal et al.29,30 also incorporate surgical fac-
tors: (1) emergent surgery and (2) high-risk (or alternatively, 
intraperitoneal) surgery.

Finally, postoperative inpatient or ICU factors have 
been implicated in the development of late postoperative 
AKI, occurring more than 48 h after surgery. These factors 
commonly include but are not limited to sepsis, mechan-
ical ventilation, acute lung injury, blood transfusion, fluid 
balance, urinary obstruction, and medications (diuretics, 
vasopressors, and nonsteroidal anti-inflammatory drugs 
[NSAIDs]).2,34

age and Sex

The relationship between age and sex on the develop-
ment of AKI remains unresolved,35 with preclinical36,37 
and clinical38 evidence suggesting female sex to be pro-
tective against AKI, while the KDIGO guidelines report 
female sex as a risk factor for AKI.8 The discrepancy 
is hypothesized to result from age-related changes in 
female-associated hormones such as estrogen and pro-
gesterone leading to studies showing postoperative AKI 

Fig. 1. Pathophysiology of perioperative acute kidney injury. aCEi, angiotensin-converting enzyme inhibitor; arB, angiotensin receptor 
blocker; nSaID, nonsteroidal anti-inflammatory drug.
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risk being performed in older, postmenopausal popula-
tions.35 After adjusting for other risk factors, Privratsky 
et al. demonstrated that younger females had the lowest 
odds of postoperative AKI, which increased with age.35 
Furthermore, preoperative hormone replacement ther-
apy was not shown to modify the risk for postoperative 
AKI. Males had a greater risk for postoperative AKI, but 
that difference gradually narrowed as the patient aged, 
with no difference noted in the 86- to 90-yr-old age 
stratification.

intraoperative Hemodynamic Goals
Consensus Guidelines

The kidney, specifically, the renal medulla, is susceptible to 
ischemia and hypoxia during periods of hypoperfusion, most 
commonly presenting as systemic arterial hypotension.39 
Whereas direct causal relationships between hypotension and 
AKI are yet to be definitively established, it is well-described 
that even brief periods of mean arterial pressure (MAP) less 
than 65 mmHg during noncardiac surgery are associated 

Table 2. Comparison of Validated risk Models for Postoperative aKI

Population
noncardiac 

surgery General surgery orthopedic surgery noncardiac surgery Cardiac surgery

Patient 
factors

age ≥ 59 yr age ≥ 56 yr age at operation age at operation
Female sex

Body mass index ≥ 
32 kg/m2

Body mass index

Male sex Male sex
Higher aSa Physical Status Higher aSa Physical Status
Lower estimated glomerular 

filtration rate
Preoperative estimated glomeru-

lar filtration rate
Preoperative serum creatinine

Peripheral vascular 
occlusive disease

COPD (necessitating 
bronchodilator 
therapy)

Pulmonary circulation disorders COPD

Liver disease ascites Liver disease
Diabetes mellitus 

(oral or insulin 
therapy)

Diabetes Diabetes (complicated) Insulin-
dependent diabetes

active congestive 
heart failure

Congestive heart failure Congestive heart failure

Left ventricular ejection fraction < 
35%; preoperative intraaortic bal-
loon pump; previous cardiac surgery

renal insufficiency 
(mild or mod-
erate)

Baseline chronic kidney disease 
severity

Coagulopathy
Weight loss
aIDS/HIV

Hypertension Hypertension
Baseline MaP

angiotensin-converting 
enzyme inhibitor or angio-
tensin receptor blocker use

angiotensin-converting enzyme 
inhibitor or angiotensin recep-
tor blocker use

Preoperative β-blocker
Polypharmacy

anemia/preoperative hemoglobin
Surgical 

factors
Emergent surgery Emergency surgery Emergent surgery Emergency surgery
High-risk surgery Intraperitoneal 

surgery
Surgical body region Type of surgery

Institutional factors
anesthetic 

factors
General anesthesia

Expected anesthesia duration
Intraoperative hypotension

reference 29 30 31 32 33

aIDS, acquired immunodeficiency syndrome; aKI, acute kidney injury; aSa, american Society of anesthesiologists; COPD, chronic obstructive pulmonary disease; HIV, human immu-
nodeficiency virus; MaP, mean arterial pressure.
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with myocardial injury, AKI, and death.39,40 In this context, 
the PeriOperative Quality Initiative consensus-building 
(POQI-3) consensus statement recommends maintaining an 
intraoperative MAP greater than 65 mmHg to potentially 
reduce the risk of postoperative AKI, with higher targets in 
patients with pre-existing hypertension.2 Conversely, the 
PeriOperative Quality Initiative consensus review did not 
find sufficient evidence in noncardiac surgery to recom-
mend a hypertensive blood pressure threshold above which 
blood pressure–lowering therapies should be initiated, but 
did determine that systolic pressures greater than 140 mmHg 
in cardiac surgery were associated with 30-day mortality. 
Guidelines are further hampered by the lack of standardized 
definitions for intraoperative hypotension.

Meta-analyses

A 2009 meta-analysis found that perioperative hemody-
namic optimization with fluids and inotropes reduced 
postoperative renal injury.41 This study was limited by sig-
nificant heterogeneity in terms of (1) goals of optimization, 
(2) modality of optimization, (3) definition of AKI, (4) sur-
gical type, and (5) risk stratification. Notably, the fluid-only
subgroup (no inotropes) showed no reduction in kidney
injury; however, it was not possible to ascertain whether
fluid and inotropes work synergistically, or whether inotro-
pes conferred the overall protective effect.

randomized Controlled Trials Measuring Postoperative 
aKI in noncardiac Surgery

In the Intraoperative Norepinephrine to Control Arterial 
Pressure (INPRESS) trial, Futier et al. found that individ-
ualized treatment (i.e., maintaining systolic blood pressure 
within 10% of baseline value using a norepinephrine infu-
sion) resulted in lower rates of postoperative organ dysfunc-
tion (a composite metric that included renal failure) after 
noncardiac surgery when compared to standard manage-
ment (i.e., maintaining systolic blood pressure greater than 
80 mmHg or within 40% of baseline value using ephedrine 
boluses).42 These findings have not been reproduced and 
contrast with another randomized trial showing no differ-
ence in a composite outcome consisting of major adverse 
cardiovascular events (MACE), AKI, and all-cause mortal-
ity between populations with target MAP greater than 75 
mmHg compared to 60 mmHg.43

The PeriOperative ISchemic Evaluation-3 (POISE-3) 
trial was an international randomized controlled trial to 
compare a hypotension-avoidance versus a hypertension- 
avoidance strategy on major vascular complications after 
noncardiac surgery.44,45 Hypotension-avoidance (target 
MAP, 80 mmHg or greater; antihypertensives for systolic 
blood pressure greater than 130 mmHg) and hypertension- 
avoidance (target MAP, 60 mmHg or greater; antihyperten-
sives continued) strategies resulted in a similar incidence 
of major vascular complications.44 As the primary outcome 

in POISE-3 did not include AKI, further research (includ-
ing subanalysis of POISE-3 data)46 is necessary to identify 
hemodynamic targets and modifications associated with 
renal protective effect.45

The ongoing, tight perioperative blood pressure man-
agement to reduce serious cardiovascular, renal, and cog-
nitive complications (GUARDIAN trial) compares tight 
pressure management compared to routine pressure man-
agement on a composite of major perfusion-related com-
plications (myocardial injury, stroke, nonfatal cardiac arrest, 
stage 2 to 3 AKI, sepsis, and death) in patients undergoing 
major noncardiac surgery.47 Preliminary results demonstrate 
that tight blood pressure management with norepinephrine 
infusion decreases intraoperative hypotension, but delaying 
antihypertensive medications has little effect on postopera-
tive blood pressure.47

Observational Studies

A retrospective multicenter study found that the impact 
of intraoperative hypotension on postoperative AKI varies 
based upon the patient’s risk quartile.32 Specifically, they 
assessed the relationship between duration of intraoperative 
hypotension (at absolute, MAP less than 50 mmHg, 50 to 54 
mmHg, 55 to 59 mmHg, and 60 to 64 mmHg; and relative 
hypotension thresholds, MAP more than 40% below prein-
duction baseline, 30 to 40%, and 20 to 30%) and KDIGO 
stage 1, 2, or 3 AKI. They found 12,431 (9.0%) cases of post-
operative AKI among 138,021 major noncardiac surgical 
procedures reviewed.32 Major risk factors for postoperative 
AKI were anemia, preoperative estimated glomerular filtra-
tion rate, surgery type, American Society of Anesthesiologists 
Physical Status, and anesthesia duration (table 2). As risk 
increased, less severe intraoperative hypotension was associ-
ated with postoperative AKI. Among the lowest risk quar-
tile, no hypotension range was associated with postoperative 
AKI. In patients with medium risk (quartile 2), only severe 
intraoperative hypotension (MAP less than 50 mmHg) was 
associated with increased postoperative AKI risk. Whereas, 
in patients with high (quartile 3) or highest (quartile 4) risk, 
even mild intraoperative hypotension (55 to 59 mmHg) was 
associated with postoperative AKI.

Another large, multicenter retrospective study by Chiu et 
al. found an increased risk of AKI (despite decreased dura-
tion of hypotension) when liberal use of vasopressors was 
employed at the expense of fluid resuscitation.48

Patient Blood Management
Although preoperative anemia has consistently been identi-
fied as a risk factor for postoperative AKI,32,49–51 studies have 
not demonstrated that correcting anemia (through either 
transfusion or transfusion-sparing strategies) decreases the 
risk for AKI.51 Specifically, a randomized controlled trial of 
patients undergoing elective cardiac surgery showed that 
neither intravenous ferric carboxymaltose nor oral iron 
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(administered for 3 to 8 weeks before surgery) improved (1) 
baseline hemoglobin, (2) intraoperative transfusion require-
ment, or (3) risk for postoperative AKI.52 Furthermore, a 
large meta-analysis of cardiac surgery patients found that 
patients with preoperative anemia were greater than three 
times more likely to develop postoperative AKI than those 
in the nonanemic group, but failed to show an association 
between perioperative transfusion and mortality.51

In addition to not improving outcomes, transfusion may 
actually be associated with an increased risk for postoper-
ative AKI. A retrospective study of more than 33,000 car-
diac surgery patients demonstrated transfusion of packed red 
blood cells was associated with both mortality and postop-
erative renal failure.53 The association between transfusion 
and postoperative morbidity may be due to a sicker patient 
population in the transfusion group that persists despite risk 
adjustment and propensity score matching.53–55 Alternatively, 
components of blood products (i.e., myeloid-related protein 
14) have been linked to direct renal injury in animal models.56

Within the noncardiac surgery57 and critically ill58

population, evidence supports a restrictive approach to 
blood transfusion. The optimal transfusion strategy for 
the cardiac surgery population remains unresolved, with 
the Transfusion Requirements After Cardiac Surgery 
trial showing a restrictive transfusion strategy (hemato-
crit less than 24%) to be noninferior to a liberal transfu-
sion strategy (hematocrit greater than 30%),59 while the 
Transfusion Indication Threshold Reduction trial showed 
a higher 90-day mortality in the restrictive transfusion 
group (hemoglobin less than 75 g/l) compared to the lib-
eral threshold group (hemoglobin less than 90 g/l).59 More 
recently, the Transfusion Requirements in Cardiac Surgery 
III trial demonstrated a restrictive transfusion strategy was 
noninferior to a liberal transfusion strategy with respect 
to the composite outcome of death from any cause, myo-
cardial infarction, stroke, or new-onset renal failure with 
dialysis, with less blood transfused.60 The 2023 American 
Association of Blood Banks Guidelines recommend (1) a 
restrictive transfusion strategy (defined as less than 7 g/dl) 
for hospitalized adult patients who are hemodynamically 
stable, (2) a transfusion threshold of 7.5 g/dl in cardiac sur-
gery, and (3) 8 g/dl in orthopedic surgery or for patients 
with pre-existing cardiovascular disease.61

intraoperative Fluid Management

Balanced versus Saline Crystalloid Solutions

Saline (0.9% sodium chloride; “normal saline”) has histor-
ically been the most commonly used intravenous crystal-
loid for intraoperative resuscitation and maintenance fluid 
therapy62; however, physiologically balanced crystalloids, like 
lactated Ringer’s solution, more closely approximate the 
physiologic levels of sodium, potassium, and chloride found 
in plasma.63 Because normal saline has a superphysiologic 
concentration of chloride (154 mM, compared to 94 to 

111 mM in plasma),64 hyperchloremic metabolic acidosis is 
a known consequence of normal saline administration, but 
whether this is of any clinical consequence is unresolved.65,66

A recent meta-analysis of randomized controlled studies 
on the use of balanced versus normal saline in the periop-
erative period demonstrated (1) uncertain effect on post-
operative mortality (low certainty), (2) uncertain effect on 
need for renal replacement therapy (low certainty), and (3) 
improved postoperative acid–base status (moderate cer-
tainty).66 Further studies are necessary in specific surgical 
populations. For example, the Saline versus Lactated Ringer’s 
Solution: The Saline or Lactated Ringer’s (SOLAR) trial of 
elective colorectal and orthopedic surgery patients found 
no difference in composite postoperative complications 
or AKI between patients receiving perioperative saline or 
lactated Ringer’s solution.67 However, balanced crystalloid 
improved postoperative electrolyte (lower chloride and 
higher bicarbonate) and acid–base (higher pH) status; the 
clinical implications of these changes remains unresolved.66

This builds upon evidence from the critically ill popula-
tion, which showed a high probability that using balanced 
crystalloids reduces AKI compared to saline,68 although evi-
dence from key randomized trials has been conflicting.64,69 
Specifically, the Balanced Solutions in Intensive Care Study 
(BaSICS) did not show a difference in 90-day mortality 
among critically ill patients bolused with saline compared to 
balanced solutions.69 This contrasts with the earlier Isotonic 
Solutions and Major Adverse Renal Events Trial (SMART), 
which showed balanced crystalloid use resulted in lower rate 
of death, new renal replacement, or persistent renal dysfunc-
tion.64 Among noncritically ill emergency department patients 
in the Saline against Lactated Ringer’s or Plasma-Lyte in 
the Emergency Department (SALT-ED) trial, there was no 
difference in hospital-free days (primary outcome), but there 
was lower incidence of major adverse kidney events within 
30 days (composite of death, new renal replacement therapy, 
and persistent renal dysfunction).70

Crystalloid versus Colloid

Whether colloids have a role in surgery has been debated 
and studied.71 Colloids, specifically hydroxyethyl starch 
solutions, initially held promise as a way to minimize over-
all volume of fluids administered, but have been shown 
to be nephrotoxic in the intensive care setting.72–74 While 
the nephrotoxic effect was not replicated in surgical pop-
ulations,71,75,76 strong evidence of coagulopathy, bleed-
ing, and transfusion77 prompted the U.S. Food and Drug 
Administration (Silver Spring, Maryland) to issue a black 
box warning in 2013 and the European Medicines Agency 
(Amsterdam, The Netherlands) to suspend marketing autho-
rization in 2018.78 Widespread use of the synthetic colloid 
hydroxyethyl starch waned behind mounting evidence of 
potential clinical harm79; however, whether this risk persists 
with human-derived albumin (the primary colloid replace-
ment for hydroxyethyl starch) remained unresolved.80
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Albumin is routinely utilized in cardiac surgery to prime 
the cardiopulmonary bypass circuit and for volume replace-
ment, although evidence supporting such practice is limited 
or conflicting.81 The randomized, double-blind, single- 
center Albumin in Cardiac Surgery (ALBICS) trial showed 
no difference in major adverse events (a composite includ-
ing AKI) between cardiac surgery patients with albumin or 
lactated Ringer’s solution use for cardiopulmonary bypass 
priming fluid and perioperative volume replacement,82 sug-
gesting that routine use of albumin did not provide any 
benefit for patients undergoing cardiac surgery with cardio-
pulmonary bypass.80 A recent meta-analysis confirmed this 
finding, leading to the conclusion that albumin should be 
used restrictively in cardiac surgery.81

Data on the perioperative use of albumin is almost non-
existent outside of cardiac surgery. The Choosing Wisely in 
Anesthesiology Initiative stated that routine administration of 
colloid for volume resuscitation “without appropriate indica-
tion” is one of the top five “low-value” activities in the field of 
anesthesiology83; however, it did not give guidance on when 
albumin might be indicated. Ongoing research seeks to bet-
ter define populations that may derive benefit. Albumin may 
have a limited role in specific surgical populations80 including 
hepatorenal syndrome,84–86 spontaneous bacterial peritoni-
tis,87,88 or after paracentesis in liver failure patients.89–91

Volume of Fluid

The major goals of intraoperative fluid resuscitations are 
optimizing intravascular volume to increase cardiac output 
and perfusion pressure in order to improve renal blood flow 
and glomerular function.92 Excessive fluid has also been 
shown to be associated with AKI93; however, the cause-and-
effect relationship between the two remains unclear.84,94 
A further complexity is that positive fluid balance can be 
caused by a combination of increased administration, which 
is potentially modifiable, and decreased urine output, which 
could only be addressed through renal replacement ther-
apy.94 Finally, the definitions of “liberal,” “restrictive,” and 
“traditional” fluid administration have evolved and can 
overlap across trials, requiring careful review of specific 
interventions when interpreting study results.

The Restrictive versus Liberal Fluid Therapy in Major 
Abdominal Surgery (RELIEF) trial demonstrated that 
restrictive fluid resuscitation (goal, net zero fluid balance) 
protocol had a significantly higher rate of AKI when com-
pared to the group receiving liberal fluid resuscitation (goal, 
reflective of traditional practice).95 This contrasts with the 
results from a randomized trial showing that restrictive 
fluid resuscitation (in combination with pre-emptive nor-
epinephrine infusion) reduced postoperative complications 
(which included both renal failure and transient creatinine 
increase) and hospitalization after radical cystectomy and 
urinary diversion.96 In light of this clinical evidence, pro-
viders need to recognize that both hypovolemia and hyper-
volemia may be associated with AKI and adopt personalized 

management guided by physiologic endpoints.94 Assessment 
of euvolemia can be guided by judicious fluid challenges 
with frequent assessment of fluid responsiveness, hemo-
dynamic homeostasis, and clinical signs of hypoperfusion. 
Intraoperative positional changes can function like a passive 
leg raise maneuvers, potentially revealing fluid responsive-
ness. Furthermore, assessment should prioritize dynamic 
markers (stroke volume, pulse pressure variation) rather 
static metrics (central venous pressure, pulmonary artery 
occlusion pressure)92—which have been shown to be an 
unreliable predictor of fluid responsiveness.97

Venous Congestion and Management of Central Venous 
Pressure

A variety of factors in the perioperative environment, includ-
ing (1) positive pressure ventilation, (2) intravenous fluids, (3) 
transfusion, and (4) cardiopulmonary bypass, impact venous 
congestion and central venous pressure.15 While optimal 
volume status remains a complex topic, venous congestion 
has been associated with cardiac surgery–associated AKI 
in patients from the Statin AKI Cardiac Surgery trial15 and 
the Aortic To RAdial Pressure (ATRAP) Gradient Study.98 
Furthermore, venous congestion was found to more accu-
rately predict AKI than arterial hypotension in the latter 
population,98 although prospective studies are necessary to 
assess whether treatment strategies to alleviate venous con-
gestion alter the development of postoperative AKI.

intraoperative Hyperglycemia Control
Dysglycemia (hypoglycemia, hyperglycemia, and glyce-
mic variability) is hypothesized to be associated with post-
operative AKI through a variety of mechanisms including 
oxidative stress, increased inflammation, and endothelial dys-
function.99 Diabetes is a well-established risk factor for AKI,30 
but more recent research has found a link between poor gly-
cemic control in the perioperative period and postoperative 
AKI,100,101 raising a question whether careful management 
of blood sugar during the perioperative period has a renal 
protective effect. Studies assessing the renoprotective effect 
of intensive glycemic control have found conflicting results, 
with some studies demonstrating a renoprotective effect102–104 
and others showing no advantage (or even a higher risk of 
death and stroke) to intensive (target, 81 to 108 mg/dl) com-
pared to conventional (target, less than 180 mg/l) glycemic 
control.105,106 Based upon these studies, the POQI-3 recom-
mends treating hyperglycemia to a target blood glucose less 
than 180 mg/dl to reduce the risk of postoperative AKI.2

Potential Renoprotective effect of 
Dexmedetomidine
The α

2
-adrenoreceptor agonist dexmedetomidine has been

associated with lower risk of AKI after cardiac surgery107 
and delayed graft function after renal transplantation.107 
The mechanism of this potential renoprotective effect has 
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not been fully resolved but is hypothesized to result from a 
combination of intrinsic anti-inflammatory properties, sym-
patholytic activity leading to reduction of renal vasoconstric-
tion, and smooth muscle relaxation.108 Larger multicenter 
trials are needed to confirm this renoprotective effect and 
to resolve the ideal dexmedetomidine dose and timing.108

nephrotoxic insults

Management of angiotensin-converting Enzyme 
Inhibitors and angiotensin receptor Blockers

Angiotensin-converting enzyme inhibitors and angiotensin 
receptor blockers have been hypothesized to increase the risk 
for AKI through a variety of mechanisms, including systemic 
hypotension, renal artery constriction, and interstitial nephri-
tis.109 Recommendations and practice for the management 
of angiotensin-converting enzyme inhibitors or angiotensin 
receptor blockers in the perioperative period are conflicting. 
The American College of Cardiology (Bethesda, Maryland) 
and American Heart Association (Dallas, Texas) recommend-
ing continuing during noncardiac surgery,110 while anesthesia 
groups routinely hold on the day of surgery due to concerns 
of intraoperative hypotension.111 Subanalysis of the Vascular 
events In noncardiac Surgery patIents cOhort evaluatioN 
(VISION) cohort found that withholding angiotensin- 
converting enzyme inhibitors or angiotensin receptor block-
ers before major noncardiac surgery was associated with a 
lower risk of death and postoperative vascular events, although 
this study was not designed to assess renal outcomes.112 This 
contrasts with an earlier meta-analysis that did not demon-
strate a difference in mortality, morbidity, and complications 
between patients who continued or held their angiotensin- 
converting enzyme inhibitors or angiotensin receptor 
blockers in the perioperative period.113 In the largest pro-
spective study to date in major elective noncardiac surgery, 
conducted by the Student Audit and Research in Surgery 
(STARSurg) Collaborative, withholding angiotensin- 
converting enzyme inhibitors or angiotensin recep-
tor blockers did not protect against the development of 
postoperative AKI.109 The POQI-3 consensus statement 
recommends restarting angiotensin-converting enzyme 
inhibitors or angiotensin receptor blocker therapy within 
the first 48 h postoperatively in patients, as long as the 
patient is hemodynamically stable and not exhibiting signs 
of postoperative AKI.2

Additionally, angiotensin-converting enzyme inhibitors 
or angiotensin receptor blockers can lead to a “functional” 
AKI (defined as an increase in serum creatinine). The pro-
spective Translational Research Investigating Biomarker 
Endpoints for Acute Kidney Injury (TRIBE-AKI) study 
demonstrated that the graded increase in functional AKI 
(continued angiotensin-converting enzyme inhibitors or 
angiotensin receptor blocker greater than held angiotensin- 
converting enzyme inhibitors or angiotensin receptor 
blocker greater than no angiotensin-converting enzyme 

inhibitors or angiotensin receptor blocker use) was not 
accompanied by “structural” AKI (no difference in AKI 
risk between the three exposure groups, as assessed by four 
different urinary biomarkers for AKI).114 The results of a 
study can be dramatically altered based upon how AKI is 
defined (serum creatinine changes vs. biomarkers), and this 
discrepancy may be especially pronounced in patients on 
angiotensin-converting enzyme inhibitors or angioten-
sin receptor blockers. This study demonstrates that a rise 
in serum creatinine is not always accompanied by tissue 
damage (and tissue damage does not always result in rising 
serum creatinine, i.e., subclinical AKI), highlighting one of 
the major limitations of serum creatinine as a biomarker.

Management of nSaIDs

NSAIDs have been used to effectively mitigate postoperative 
pain while decreasing the opioid requirement.115 NSAIDs 
can adversely affect renal via prostaglandin mediated afferent 
arteriolar dilation, which causes reduced glomerular perfu-
sion,116 leading to acute interstitial nephritis. Drug-associated 
acute interstitial nephritis presents a cell-mediated immune 
response, characterized by acute loss of kidney function, 
interstitial infiltrates, edema, and tubulitis on biopsy (with 
relative sparing of glomerulus and vasculature).117 Because of 
this risk, the Medicines and Healthcare Products Regulatory 
Agency (London, United Kingdom) has recommend that 
NSAIDs be avoided in hypovolemic patients118; however, 
best practices in low-risk patients remain unresolved.2 A 
2018 meta-analysis found that although NSAIDs led to 
a slight increase in serum creatinine, this was of unclear 
clinical significance, and no reliable conclusions could be 
drawn regarding the association between NSAIDs and renal 
replacement therapy, hospital length of stay, or death.116 A 
secondary analysis of data from the Restrictive versus Liberal 
Fluid Therapy in Major Abdominal Surgery (RELIEF) trial 
found that intraoperative NSAID or cyclooxygenase-2 
inhibitor use was significantly associated with increased post-
operative AKI, supporting the need for a randomized trial to 
better define the risk–benefit balance of these perioperative 
analgesic adjuncts.119 Emerging proteomic research sheds 
light on the molecular pathways, specifically differences in 
prostaglandin synthesis, driving NSAID-attributed AKI in 
the perioperative space.120

Other Potential nephrotoxic Exposures

Nephrotoxic medication exposure represents one of the 
most common etiologies of AKI in hospitalized patients.121 
Antimicrobials (antivirals, antibiotics, and antifungals) have 
been implicated in impaired renal function through mech-
anisms ranging from acute interstitial nephritis to acute 
tubular necrosis.122 A variety of strategies to mitigate this 
risk has been proposed including (1) adjusting the dose 
based upon creatinine clearance, (2) avoiding concomitant 
nephrotoxins, and (3) regular assessment of antibiotic neces-
sity and duration.122 Implementation of an electronic health 
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record screening and clinical decision support reduced the 
rate of AKI by 64% among noncritically ill children.121

Exposure to iodinated contrast media has been asso-
ciated with acute injury in numerous historical studies,123 
leading many clinicians to avoid contrast in patients with 
reduced renal function.124 Studies showing the association 
between contrast and AKI often lacked a control group of 
patients not exposed to contrast,123 whereas more recent well- 
controlled observational studies suggest a much lower associa-
tion between contrast exposure and AKI.125–127 The American 
College of Radiology (Reston, Virginia) clarified the implied 
causal relationship between contrast media and AKI through 
the adoption of two new terms: (1) contrast-induced AKI 
and (2) contrast-associated AKI.128 Contrast-associated AKI is 
defined as any AKI occurring within 48 h after the admin-
istration of contrast media, while contrast-induced AKI is 
the subset of cases that can be causally linked to the con-
trast exposure.124 While the incidence of contrast-induced 
AKI is markedly lower than that of contrast-associated AKI,124 
the actual risk remains unresolved, with some studies show-
ing no elevated risk for contrast-induced AKI regardless of 
baseline renal function126 and others showing risk only at 
severely reduced renal function.127 The primary risk factor for 
contrast-associated AKI remains baseline estimated glomeru-
lar filtration rate, with diabetes mellitus, nephrotoxic exposure, 
hypotension, and hypovolemia conferring additional risk.124 
From a pragmatic perspective, given these uncertainties, renal 
risk alone should not contraindicate truly necessary imaging.

In addition to the previously described patient-specific 
risk factors, procedure-specific factors impact the develop-
ment of contrast-associated AKI. For example, percutane-
ous coronary interventions (particularly in ST-Elevation 
Myocardial Infarction [STEMI] patients) are particularly 
susceptible to AKI due to contrast exposure, reduced perfu-
sion secondary to transient hypotension or reduced cardiac 
output, and high baseline patient risk due to comorbid-
ities.129 Intraarterial contrast places the patient at higher 
risk than intravenous contrast administration, which has 
improved with decreasing osmolar concentration of intra-
venous contrast.130 The volume and osmolarity of the of 
contrast media represent two modifiable risk factors.129,131

Protocolized Management
The KDIGO guidelines make a number of recommen-
dations for minimizing AKI, including (1) avoidance of 
nephrotoxic agents, (2) discontinuation of angiotensin- 
converting enzyme-inhibitors and angiotensin recep-
tor blockers for 48 h after surgery, (3) close monitoring 
of serum creatinine and urine output, (4) avoidance of 
hyperglycemia, (5) avoidance of radiocontrast, (6) hemo-
dynamic monitoring with a pulse index continuous cardiac 
output catheter, and (7) algorithm-based optimization of 
volume and hemodynamic status.8,132 Meersch et al. found 
that a therapeutic bundle derived from these KDIGO rec-
ommendations significantly reduced the rate of cardiac 

surgery–associated AKI (55.1% vs. 71.7%; absolute risk 
reduction, 16.6; 95% CI, 5 to 27.9%; P = 0.004) within 72 h 
compared to standard care (MAP greater than 65 mmHg 
and central venous pressure between 8 and 10 mmHg).132 
This contrasts with a more recent study from Shen et al. 
demonstrating that an enhanced recovery after surgery pro-
tocol consisting of balanced fluid management, flexible use 
of vasoactive drugs, and multimodal analgesia containing 
NSAIDs was safe but did not impact incidence of postop-
erative AKI.133 The bundled interventions limit speculation 
on the contribution of any single measure.

Treatment

Stage-based Treatment approach

Because advances in the treatment of postoperative AKI 
have been limited,6,7 management in the perioperative 
period has traditionally focused on prevention and diagnosis. 
Once postoperative AKI develops, supportive management 
(i.e., preventing ongoing renal insult through removal of 
nephrotoxic agents and optimized renal perfusion through 
fluids and vasopressors) is the mainstay of therapy.134The 
2012 KDIGO guidelines for the management of AKI rec-
ommend a stage-based treatment approach.7,135 For stage 1 
AKI or patients at high risk for AKI, primary management 
goals include identifying the likely cause of AKI and avoid-
ing secondary insults where possible (such as administration 
of NSAIDs or other nephrotoxic medications when alter-
natives are available).7 In addition, hemodynamic optimiza-
tion to ensure adequate kidney perfusion is an important 
goal, although the guidelines do not provide specific hemo-
dynamic targets. Two single-center randomized controlled 
trials (one in cardiac surgery and one in noncardiac surgery 
patients) demonstrated significant reductions in postoper-
ative AKI with a bundled care approach including target 
MAP 65 mmHg or greater.136,137 Notably, a meta-analysis 
suggested that protocolized approaches to hemodynamic 
optimization are associated with reduced risk of AKI overall 
despite differences in specific targets.41

In patients who progress to stage 2 AKI, adjusting drug 
dosages to account for glomerular filtration and careful 
attention to volume input or output become important. 
Stage 3 AKI is associated with acid–base imbalance, altered 
electrolyte levels, and accumulation of uremic toxins.7 
Decisions on the need for intensive care and initiation of 
kidney replacement therapy require expertise in nephrol-
ogy or critical care medicine and should be considered 
early in disease progression.135

Phase of care, monitoring, and follow-up can vary greatly 
depending on the severity of disease. The KDIGO clinical 
practice guidelines recommend that all patients diagnosed 
with AKI are evaluated at 3 months to screen for new or pro-
gressive chronic kidney disease,135,138 while the Acute Disease 
Quality Initiative and PeriOperative Quality Initiative rec-
ommend all postoperative patients with AKI or acute kidney 
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disease have a kidney health assessment within 30 days of 
hospital discharge.2 As morbidity and mortality increase with 
severity of AKI (and in patients without renal recovery), these 
factors should inform the frequency and nature of follow-up.2 
Management of AKI during the period of inpatient hospital-
ization provides an opportunity to prevent or delay progres-
sion of AKI to chronic kidney disease.138 Patients requiring 
acute renal replacement therapy (or necessitate continuous 
renal replacement therapy due to hemodynamic instability) 
should be managed in the ICU.139 Furthermore, a variety 
of critical conditions associated with AKI including shock, 
sepsis, acid–base imbalance, and respiratory failure secondary 
to fluid overload require intensive care. The KDIGO man-
agement guidelines recommend considering ICU admission 
beginning at stage 2 AKI.135

Prevention of aKI

Diuretics may be used to manage volume overload secondary 
to AKI and increase potassium excretion.8 Administration of 
loop diuretics has been shown to reverse oligo-anuria, reveal-
ing patients with less severe renal injury or adequate renal 
reserve,140 but has not been shown to prevent AKI, need for 
renal replacement therapy, or overall mortality.141,142 Judicious 
fluid administration combined with loop diuretics (i.e., 
“matched hydration”) may increase tubular flow of filtrate 
without volume depletion and associated renal hypoperfu-
sion143–145; however, further randomized control trials are nec-
essary before this strategy can be broadly recommended in 
the prevention of postoperative AKI.141

Despite initially promising studies,146,147 neither pre-
operative aspirin nor clonidine reduced the risk of post-
operative AKI in the POISE-2 randomized trial of 
noncardiac surgery patients.23 Dexamethasone potentially 
attenuates the systemic inflammatory response to cardio-
pulmonary bypass and reducing inflammatory mediators, 
but the Dexamethasone in Cardiac Surgery (DECS) trial 
and the Steroids in Cardiac Surgery (SIRS) trial failed to 
support prophylactic use of steroids during cardiac sur-
gery.148,149 Finally, a meta-analysis found no evidence that 
N-acetylcysteine improved renal outcomes after major sur-
gery150; therefore, the KDIGO management guidelines rec-
ommend against using oral or intravenous N-acetylcysteine
for prevention of postsurgical AKI.135

Management of Postoperative aKI

The Acute Disease Quality Initiative and PeriOperative 
Quality Initiative consensus report recommends deter-
mining and resolving the underlying cause of postopera-
tive AKI.2 Mainstays of management include removal or 
avoidance of nephrotoxic exposure and hemodynamic 
optimization. Renal perfusion can be maintained through 
a combination of fluids and vasopressors, with protocol- 
based management to prevent worsening AKI in high-risk 
perioperative patients. Diuretics should not be used in the 

treatment of AKI, except to manage volume overload.2 A 
number of agents including dopamine, fenoldopam, atrial 
natriuretic peptide, insulin-like growth factor-1, and diuret-
ics have failed to improve the course of AKI and do not 
have a role in the management of AKI.2,8

Timing and Indications for renal replacement Therapy

Renal replacement therapy is used only if there is a spe-
cific indication, like severe acidosis, hyperkalemia, uremia, 
or inability to manage volume status with diuretics.2,8 
The Standard versus Accelerated Initiation of Renal-
Replacement Therapy in Acute Kidney Injury (STARRT-
AKI) trial showed no evidence of benefit and higher risk 
for dependence at 90 days when renal replacement ther-
apy was initiated early for postoperative AKI compared to 
conservative management.151 The optimal timing and indi-
cations for renal replacement therapy remain unresolved 
and should be carefully weighed on an individual basis.1 
Absolute indications for renal replacement therapy include 
(1) symptoms or signs of uremia (i.e., pericarditis, bleed-
ing, or encephalopathy), (2) pulmonary edema resistant to
diuretics, (3) refractory hyperkalemia (greater than 6.5 mM, 
rapidly increasing, or associated with cardiac arrhythmias),
(4) metabolic acidosis (pH less than 7.2), or (5) intoxica-
tion with dialysable drug or toxin.152,153 Relative indications
are (1) organ dysfunction impacted by either fluid over-
load or from the AKI; (2) administration of large volumes
of fluid (i.e., blood transfusion); (3) solute burden such as
from tumor lysis syndrome, rhabdomyolysis, or hemolysis;
and (4) oligo-anuria due to severe AKI with low probability
of rapid renal recovery.152

special Populations

Cardiac Surgery

The incidence of AKI after cardiac surgery ranges from 
15 to 30%.18,154 Even patients who fully recovered renal 
function after developing AKI had a significantly higher 
mortality than those not developing AKI.155 The increased 
incidence of AKI in cardiac surgery patients can be 
attributed to both the unique stress profile of the proce-
dure (e.g., cardiopulmonary bypass impairing autoregula-
tory mechanisms and inducing and inflammatory response, 
hemodilution, and atheroembolic events associated with 
bypass cannulation and the surgical technique) and the risk 
profile of the patient population. A variety of risk predic-
tion models for AKI after cardiac surgery have been devel-
oped including the Cleveland Clinic Score,33 the Mehta 
Score,156 and the Simplified Renal Index.157 Intraoperative 
risk factors include cardiopulmonary bypass, blood transfu-
sion, proteinuria, urgent surgery, reoperation, and preoper-
ative intra-aortic balloon pump.49,158,159 Patients undergoing 
valvular surgery have a higher incidence of cardiac surgery–
associated AKI than those undergoing coronary artery 
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bypass graft surgery.49,160 Strategies for prevention and mit-
igation of cardiac surgery–associated AKI have been com-
prehensively reviewed,155,161 and include implementation 
of the “KDIGO bundle of care,”132 goal-directed oxygen 
delivery while on cardiopulmonary bypass,162,163 and a 
restrictive transfusion threshold.164

The Vasopressin versus Norepinephrine in Patients with 
Vasoplegic Shock after Cardiac Surgery (VANCS) trial 
found that patients receiving vasopressin as a first-line agent 
had lower incidence of moderate to severe AKI than those 
receiving norepinephrine,165 and dobutamine reduced car-
diac surgery–associated AKI when implemented as a part of 
a “bundle of care” approach.132,166 Further research is nec-
essary on the optimal and mitigation strategies and hemo-
dynamic targets.

The Society of Thoracic Surgeons (Chicago, Illinois) 
definition for postoperative acute renal failure essentially 
only includes stage 3 (or dialysis-requiring) AKI.167 While 
other studies apply the KDIGO criteria after cardiac sur-
gery,168–170 Society of Thoracic Surgeons database reporting 
notably focuses on this acute renal failure definition.

Cirrhosis

Diagnostic criteria relying on serum creatinine can over-
estimate kidney function in cirrhotic patients, and bili-
rubin can decrease the accuracy of creatinine assays.171 A 
joint consensus statement from the International Club of 
Ascites (ICA) and the Acute Disease Quality Initiative rec-
ommends defining AKI in patients with cirrhosis using the 
KDIGO criteria, while using the lowest serum creatinine 
value up to 12 months before.172 In addition to AKI meet-
ing the KDIGO definition, a diagnosis of hepatorenal syn-
drome, AKI requires (1) cirrhosis with ascites, (2) absence 
of improvement in serum creatinine and/or urine output 
within 24 h after adequate volume resuscitation, and (3) 
absence of an alternative explanation for the primary cause 
of AKI.171,172 ICA modifications to KDIGO have shown to 
accurately predict 30-day mortality, length of hospital stay, 
and organ failure.173 However, because automated algo-
rithms calculate and surgical registries curate AKI outcomes 
using KDIGO standard criteria, the unmodified KDIGO 
definition has been employed in studies in the liver trans-
plant population without issue.28

renal Transplant

Delayed graft function, typically defined as dialysis require-
ment within 1 week of transplant, is a manifestation of 
AKI attributable to the transplant process.174 Delayed graft 
function occurs in about one of five transplants, with inci-
dence in deceased donor transplants as high as 40%,175 and 
is associated with clinical outcomes including acute rejec-
tion,176 poor graft survival,174 and increased mortality.177,178 
Furthermore, delayed graft function exacts a significant 
economic burden, increasing transplant cost by more than 
$18,000, length of hospitalization by 6 additional days, and 

ICU stay by 2 days.175,179,180 Despite improved understand-
ing of the pathophysiology leading to delayed graft function, 
including the molecular mechanism of ischemia–reperfu-
sion injury and allograft immunogenicity,177 the incidence 
of delayed graft function has continued to rise (presumably 
due to increased cold ischemia time resulting from changes 
in the Kidney Allocation System).175

Traditional risk factors181 for delayed graft function can 
be divided into (1) donor factors (age, sex, body mass index, 
etc.), (2) recipient factors (age, race, sex, comorbidities, etc.), 
(3) graft factors (cold ischemia time, human leukocyte anti-
gens or ABO incompatibility, deceased donor compared to
living donor, and donation after cardiac death compared to
donation after brain death), and (4) surgical factors (right
nephrectomy, laparoscopic approach for donor nephrec-
tomy, etc.).182–184 Improved risk stratification informs man-
agement decisions (for example, invasive monitoring in
high-risk patients) and organ allocation; however, charac-
terized risk factors are mostly nonmodifiable. The intra-
operative and early ICU periods remain an understudied
source of outcome variation and represent a window where
early intervention could modify the clinical trajectory.

emerging science

Biomarkers

Despite standardization of AKI criteria, diagnosis remains 
dependent on changes in serum creatinine and urine out-
put.185 A major limitation of serum creatinine as an AKI 
biomarker is that it does not increase until substantial paren-
chymal injury has occurred. This time “lag” prevents recog-
nition of renal injury during the time window, when early 
intervention can alter the clinical course.186 Furthermore, 
functional biomarkers like serum creatinine are altered by 
a variety of overlapping processes, independent of renal 
injury (like fluid overload, malnutrition, and muscle wast-
ing).186,187 Significant effort has been devoted on identifying 
and validating novel biomarkers for AKI in the periopera-
tive period that may reflect the specific process of nephron 
injury and enable earlier detection of AKI.185

Biomarkers can be categorized into multiple overlapping 
classification schema: (1) blood versus urine, (2) anatomic 
location (glomerulus, proximal tubule, loop of Henle, and 
distal tubule), and (3) functional mechanism (injury, inflam-
mation, and repair or fibrosis).185 Injury biomarkers are 
released from injured kidney cells (analogous to troponin 
release from injured myocardial cells during an infarction), 
potentially providing a more sensitive and specific marker of 
AKI than blood urea nitrogen and serum creatinine.188 The 
injury biomarkers, neutrophil gelatinase-associated lipocalin, 
kidney injury molecule-1, and liver fatty acid–binding pro-
tein, are early markers of renal tubular injury and potentially 
identify AKI during the “blind window” before rise in serum 
creatinine or BUN.188 Inflammatory biomarkers, interleukin- 
18, tumor necrosis factor receptor-1 (TNFR-1), tumor 
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necrosis factor receptor-2 (TNFR-2), and osteopontin, are 
activated and recruited as an early response to kidney injury, 
and hold promise (in combination with other biomarkers) 
of predicting prognosis and progression of postoperative 
AKI.189–191 Additionally, specific inflammatory markers, tumor 
necrosis factor-α (TNF-α) and interleukin-9, can be used 
to differentiate acute interstitial nephritis from other causes 
of AKI.192 After injury and inflammation, a tightly regu-
lated reparative process occurs. Biomarkers associated with 
repair (epidermal growth factor and chitinase 3-like 1) and 
fibrosis (transforming growth factor-β [TGF-β]), monocyte 
chemoattractant protein 1, and type III procollagen peptide 
can be leveraged to predict renal recovery and interstitial 
fibrosis or tubular atrophy.193

Injury biomarkers rise at different rates, with each 
having a characteristic injury response curve (analogous 
to the sequential rise of myoglobin, troponin I, creatine 
phosphokinase, and lactate dehydrogenase after myocar-
dial injury).194 For example, urinary neutrophil gelatinase- 
associated lipocalin begins to rise within 2 h and peaks 
within 6 h after surgery.195–197 This compares to kidney 
injury molecule-1, which typically rises within 12 h, peak-
ing around 24 h.197,198 A comparison of the time course for 
novel AKI biomarkers can be found in table 3.

Combining multiple biomarkers enables improved risk 
prediction (quantified by discrimination and net reclassi-
fication improvement) earlier in the disease course, when 
interventions are more likely to impact disease trajectory.195 
Nephrocheck (bioMerieux, France), a test that combines 
urinary tissue inhibitor of metalloproteinases 2 and insulin 
like growth factor binding protein 7, was approved by the 
Food and Drug Administration as the first biomarker for 
AKI in 2014. The sensitivity and specificity of all biomark-
ers depend on (1) the temporal relationship between renal 
injury and when the sample is drawn, (2) the diagnostic 
threshold selected, and (3) the AKI population (critically ill, 
cardiac surgery, etc.). Plasma biomarkers demonstrate better 
discrimination for early postoperative AKI (compared to 

urine biomarkers) even when normalized to urinary creati-
nine and injury biomarkers had better predictive ability than 
either stress or inflammatory biomarkers.199,200 Across all 
populations and AKI etiologies, serum and urine neutrophil 
gelatinase-associated lipocalin had the best diagnostic accu-
racy (table 3); however, performance was more limited in 
surgical populations (with neutrophil gelatinase-associated 
lipocalin/creatine performing best in this population).200

Continued development, validation, and integration of 
biomarker panels will enable earlier, more accurate diagno-
sis of AKI.192 More recently, an independent dose–response 
association was seen between the level of urinary biomarkers 
(interleukin-18, neutrophil gelatinase-associated lipocalin, 
kidney injury molecule-1, liver fatty acid–binding protein, 
and albumin) and duration of AKI in the TRIBE-AKI car-
diac surgery cohort.215 Urinary epidermal growth factor and 
monocyte chemoattractant protein 1 predict which AKI 
patients are likely to develop chronic kidney disease after 
cardiac surgery.216 In addition to predicting AKI progres-
sion and AKI–to–chronic kidney disease transition, novel 
biomarkers can impact the management of AKI185—for 
example, (1) guiding diuresis in patients with acute decom-
pensated heart failure217 and (2) triggering implementation 
of the KDIGO care bundle after major abdominal surgery.137 
Ongoing research will define meaningful subgroups using 
a combination of genomic data, transcriptomics, and bio-
markers.218 Furthermore, advanced analytical techniques 
will integrate molecular signatures from multiple biomark-
ers, establish unbiased predictive cutoff values, and provide 
insight into the pathology and progression of renal disease.185

Genetics

While the genetic contribution of chronic kidney disease 
has been well characterized,219 the genetics of AKI remains 
poorly understood. Most studies on the genetic underpin-
nings of AKI have employed a candidate gene approach 
and failed to identify contributory variants consistently.220 
A genome-wide association study of AKI in a general 

Table 3. Comparison of Common aKI Biomarkers

Biomarker source Classification initial Rise Peak sensitivity specificity Reference

Creatinine Serum Filtration 10 h > 48 h 37 (91)* 83 (40.8)* 201,202
CysC Plasma Filtration 4 h 24 h 44–82 92–95 203–205
IL-18 urine Inflammatory 6 h 12 h 68 80 200,206
KIM-1 urine Injury 12 h 24 h 76 79 198,200,207–209
L-FaBP urine Injury 2 h 12 h 70 81 200,210
nGaL urine Injury 2 h 6 h 77 81 197,200
[TIMP-2] × [IGFBP7] urine Stress 4–6 h 10 h 68 74 200,204,211

*Serum creatinine is a late marker for aKI (does not peak for 48–72 h after renal injury) and has poor sensitivity for postoperative aKI (since serum creatinine remains stable until 
more than 50% of nephrons are impacted).212 The KDIGO definition for aKI has historically been treated as the accepted standard or reference, complicating sensitivity or specificity 
calculations of the serum creatinine biomarker.213 additionally, focusing on the serum creatinine component of the KDIGO criteria (while ignoring urine output) underestimates stage 
2 or greater aKI and decreases sensitivity.214

aKI, acute kidney injury; CysC, cystatin C; IGFBP7, insulin like growth factor binding protein 7; KDIGO, Kidney Disease: Improving Global Outcomes; KIM-1, kidney injury molecule-1; 
nGaL, neutrophil gelatinase-associated with lipocalin; IL-18, interleukin-18; L-FaBP, liver fatty acid-binding protein; TIMP-2, tissue inhibitor of metalloproteinases 2.
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hospitalized population (mixture of different AKI risk fac-
tors including surgery, sepsis, and nephrotoxic medications) 
failed to identify any variants at the level of genome-wide 
significance (P < 5 × 10-8), but did report two novel variants 
adjacent to the dispatched RND transporter family mem-
ber 1 (DISP1) and Toll-like receptor 5 (TLR5) genes at 
a lower suggestive threshold.221 Genome-wide association 
studies focused on postoperative AKI222 and cardiac sur-
gery–associated AKI223–226 have found very few significant 
associations, and these associations were not consistently 
replicated across studies. Additionally, a polygenic score that 
summarizes the genetic burden across the whole genome 
into a single number that can be used in disease risk mod-
eling was not associated with cardiac surgery–associated 
AKI.225 These may be because cardiac surgery–associated 
AKI is only minimally influenced by baseline genetics, and 
clinical risk factors play a more influential role in the devel-
opment and pathogenesis.225 The expansion of biobanks 
will enable greater statistical power on a larger, more diverse 
population.225 Future studies may also identify subpopula-
tions where genetics may exert disproportionate influence 
(for example, stratified by patient risk or stage of AKI).

Future Directions
Although preservation of renal perfusion is fundamental 
to AKI prevention and management,7 the optimal strat-
egy to ensure this remains unresolved. Ongoing research 
will provide insight into optimal (1) choice of vasopres-
sors or inotropes, (2) fluid management, and (3) hemody-
namic or oxygenation goals for targeted management,7,155 
and will likely require a personalized or precision- 
medicine approach. In addition to understanding inter-
ventions to optimize renal perfusion, more research on the 
temporal relationship between each of these exposures and 
renal injury is necessary. For example, intraoperative hypo-
tension has traditionally been evaluated over the entire 
course of the procedure.39 Future studies that employ a more 
nuanced definition for hypotension could overcome such 
limitations while providing insight into the specific mecha-
nism and timing between perfusion and AKI. Furthermore, 
the risk–benefit balance between nephrotoxic exposures, 
like NSAIDs and intravascular contrast, remains an area of 
active research. The incidence of contrast-associated AKI 
and effective interventions in high-risk patients remain areas 
of controversy and active research.155 Advances in analytical 
and predictive algorithms, including machine-learning and 
clinical decision support, will enable more accurate predic-
tion and stratification of patients at risk for AKI.

Many studies have focused on the serum creatinine–
based diagnostic criteria, while less attention has been 
paid to prognostic implications and management of oligu-
ria.2,227 Despite key limitations, serum creatinine remains 
the standard biomarker for AKI in perioperative practice.10 
Advances in biomarkers may enable improved sensitivity, 

earlier detection, prognostic insight, and more precise classi-
fication. The management of AKI is largely supportive (pre-
vent ongoing renal insult and optimize renal perfusion),134 
with the optimal timing and indications for renal replace-
ment therapy unresolved.1 Proposed treatments for AKI, 
including dopamine, fenoldopam, aspirin,23 steroids,149 and 
ischemic preconditioning,228 have not been found to alter 
the course of disease; however, prevention and treatment 
modalities remain key areas for future research.

Conclusions

Perioperative AKI has been consistently associated with long-
term morbidity,1 mortality,2 and healthcare costs,3 even among 
patients with complete renal recovery.4 Treatment options for 
postoperative AKI are limited,6,7 so perioperative manage-
ment has traditionally focused on prevention and diagnosis. 
The KDIGO criteria, currently used to define AKI,8 rely on 
changes in serum creatinine and absolute urine output to pro-
vide an easy-to-interpret, objective, and validated approach 
useful for epidemiologic studies; however, this definition has 
notable limitations, including a susceptibility to be influenced 
by nonrenal factors and a time lag between nephron injury 
and rise in serum creatinine.8 AKI represents a clinical syn-
drome, rather than a single disease, with commonly implicated 
mechanisms including (1) oxido-inflammatory stress, (2) renal 
hypoperfusion, (3) endogenous or exogenous nephrotoxins, 
and (4) iatrogenic causes. Risk factors for postoperative AKI 
are divided into (1) patient-related, (2) surgery-related, (3) 
anesthetic-related, and (4) ICU-related risk factors. Recent 
studies have attempted to integrate anesthetic factors into risk 
assessment.32 Notably, characterizing hypotension is com-
plicated by nonstandardized definitions and baseline risk. A 
variety of strategies for prevention and mitigation of post-
operative AKI have been proposed and include preservation 
of renal perfusion, avoidance of nephrotoxic exposure, imple-
mentation of bundles of care, goal-directed oxygen delivery, 
and a restrictive transfusion threshold. Ongoing research will 
provide insight into optimal choice of vasopressors or ino-
tropes, fluid management, and hemodynamic or oxygenation 
goals for targeted management, and will likely require a per-
sonalized or precision-medicine approach. Continued devel-
opment, validation, and integration of biomarker panels will 
enable earlier, more accurate diagnosis of AKI.
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